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The Trasi Isomerisation of Bis(dioxolene)bis(pyridine) Ruthenium Complexes.

Yu-Hong Tse, Pamela R. Auburn and A.B.P. Lever.

Abstract:

The isomerisation of Um to ci bis(3,5-di-t-butylbenzo

sen iquinonato)bis(R-Pyridine)ruthenium, [Ru(R-PY) 2(DTBDiox)2], is

indaced by warming with an excess of R-Pyridine, where R = 3-chloro,

4-methyl, 4-phenyl or 4-butyl. The rates of these reactions, for the species with

R-Py = 3-chloropyridine, were monitored in o-dichlorobenzene by uv-visible

spectroscopy, against varying 3-chloropyridine and varying

tra-[Ru(3-ClPY)2(DTBDiox)2] concentration. The data were found to obey

first order kinetics; -d[Ru(3-C1PY) 2 (DTBDiox)2ydt =

kobsd[Ru(3-CIPY) 2(DTBDiOx) 2] over a considerable range of pyridine

concentration. A plot of 1/kobsd vs. [3-chloropyridine] is linear with a positive

intercept. A dissociative mechanism is proposed for the isomerisation

reaction. The activation parameters were determined for the specific case of

R-Py = 3-chloropyridine. Electronic and electrochemical features of these

species are briefly discussed.
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Introduction:

The series of complexes Ru(NN) 2(diox) (1-3) and Ru(NN)(diox) 2 (3-7) have been

described, where NN may be 2,2'-bipyridine or two substituted pyridines, R-Py, and (diox) is

a dioxolene ligand which may exist in the catechol, semiquinone or quinone oxidation states.

These complexes form redox series whose electronic structures have been probed by a range

of techniques including X-ray crystallography, NMR, ESR, magnetism and UV/Vis/FTIR,

PES and resonance Raman (rR) spectroscopy. The bipyridine-bis(dioxolene) complexes are

necessarily ci& while the R-Py analogues could be either gi or .ans.

The previously described trans-Ru(R-PY) 2(diox) 2 series of complexes (5,7) are found

to be isomerised to a cil configuration when warmed with an excess of pyridine. Here we

describe studies of the isomerisation reaction and electrochemical and optical data

characterising these new cis species.

Experimental Section:

Equipment. All absorbance measurements were performed on a Hitachi-Perkin Elmer

microprocessor model 340 spectrometer equipped with an electrically heated cell

compartment connected to a built-in thermostat for temperature measurement and control.

Fourier transform infrared (FTIR) data were obtained using a Nicolet SX20 spectrometer

1H NMR and 13 C NMR spectra were obtained with a Bruker AM300FT NMR spectrometer

using samples dissolved in CDC 3.

Electrochemical data were obtained with a Pine Instruments RDE-3 potentiostat.

Cyclic voltanmetry was carried out, in dichloroethane (DCE), using platintum wires as

working and counter electrodes, and a AgCl/Ag quasi-reference electrode with ferrocene

(Fc) as an internal standard. The Fc/Fc + couple lies at + 0.425 V vs. SCE (7).

Materials. Tetrabutylammonium perchlorate (TBAP, Kodak) was recrystallised from

absolute ethanol and dried in vacuo at 500 C for 2 days. 1,2-Dichlorobenzene (DCB)

(Aldrich, HPLC grade) and d8 toluene were used as supplied. 1,2-Dichloroethane (DCE)

was fractionally distilled from P20 5. 3-chloropyridine (Aldrich) and 4-methylpyridine
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(Aldrich), were fractionally distilled under reduced pressure. Other substituted pyridines

(Aldrich) were used as supplied without any further purification.

Syntheses. The species =tans-Ru(R-PY) 2(DTBDiox) 2 were prepared by the methods

given previously (5,7).

_Zi-Ru(R-PY) 2 (DTBDiox) 2 : Trns-Ru(R-PY) 2 (DTBDiox) 2 (36 mg, ca 5.0 x 10-2 mmol)

was dissolved in toluene (10 mL). R-pyridine (R = 3-chloro, 4-methyl or 4-phenyl) (2.1

mmol) was added. The resulting mixture was refluxed under nitrogen for 12 h, filtered hot

and then concentrated using rotary evaporation; methanol (1 mL) was then added to initiate

crystallisation. The products were filtered, washed with cold methanol and air dried; yield

80%. Anal: Found C 59.48; H 6.27; N 3.64. Calc. C 59.37; H 6.29; N 3.64. for R =

3-chloro; Found C 64.70; H 7.44; N 3.88. Calc. C 64.40; H 7.60; N 3.76. for R = 4-methyl,

monohydrate; Found C, 68.70, H. 6.86, N, 3.53. Cac. C, 69.0, H, 6.95, N, 3.21 for R =

4-Phenyl, monohydrate. The I= species used for the kinetic measurements had acceptable

C, H, N analyses (7).
1H NMR data for R = 3-chloropyridine species, in CDC13. Data for the UM isomer

from (7). (s = singlet, d = doublet, dd = doublet-doublet, m = multiplet) - trans-isomer

7.74 (d, J = 2.2 Hz, 2H); 7.63 (d, J = 2.0 Hz, 2H); 7.6 (dd, J = 5.4, 1.1 Hz, 2H); 7.23 (m, 2H);

6.87 (dd, J = 8.2, 5.7 Hz, 2H); 6.17 (br s, 2H); 1.62 (s, 18H); 1.35 (s, 18H). cis-isomers 8.54

(m); 8.27 (m); 8.04 (d, J=2.2 Hz); 7.73 (m); 7.57 (m); 7.14 (m); 6.90 (m); 6.80 (m); 6.70 (d,

J =2.1 Hz); 1.77 (s); 1.67 (s); 1.37 (s); 1.36 (s); 1.33 (s); 1.20 (s); 0.89 (s); 0.88 (s).

Kinetic Studies. DCB was used as the solvent for the rate studies unless otherwise

stated. The liquid 3-chloropyridine (8.40 x 10- 5 mole to 1.05 x 10-3 mole) was mixed with 4

mL of a stock solution of ans-Ru(3-ClPY) 2(DTBDiox) 2 and diluted to 5 mL

[(trans-Ru(3-CIPY) 2(DTBDiox)2 = (2.07 x 10-4 M)J. The reaction mixture was transferred

to a 1 cm cell which was placed into a pre-heated cell compartment; the temperature of the

solution inside the cell was measured before and after each experiment (variation t () 25')C).

Successive spectra were collected at time intervals from 2.8 min to 100 min, depend r.m
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the temperature and concentration range involved.

The isomerisation from uams -- > gis-Ru(3-CPY) 2(DTBDiox) 2 was monitored by

observing the growth of a new absorption band lying close to 600 run (6) observed for the cia

isomer. The t isomer possesses very weak absorption at this wavelength (Figure 1).

For the pseudo-first-order conditions, the observed rate constants (kobsd) were

obtained from the Guggenheim plots (8). The reactions were allowed to proceed for 3 - 4

half-lives. The delay time was about 2 half-lives.

Rate constants for isomerib-ation of 1r=an-Ru(3-CLPy) 2(DTBDiox) 2 (2.07 x 10-4 M), in

DCB, at various temperatures from 91 to 1100C are presented here as a function of the

concentration of 3-chloropyridine. Values of [3-chloropyridine] are tabulated, together with

kobsd, (all values to be multiplied by 10-4 s-1), followed by the standard deviation in

parentheses.

Temp. oC [3CIPy] 0.016 0.03 0.06 0.08 0.1 0.2 M

91 1.64 1.24 0.89 0.857 0.787 0.496

(0.01) (0.02) (0.01) (0.002) (0.001) (0.001)

96 3.19 2.67 2.14 1.87 1.64 1.06

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01)

100 5.97 5.33 3.99 3.71 3.50 2.24

(0.04) (0.06) (0.01) (0.04) (0.03) (0.01)

105 11.4 9.7 7.4 6.41 6.16 4.26

(0.21) (0.19) (0.1) (0.06) (0.06) (0.04)

110 18.89 18.1 14.61 13.3 12.1 9.02

(0.73) (0.5) (0.07) (0.15) (0.2) (0.07)

Data were also obtained, at 900 C, for constant [3-chloropyridine] = 0.16 M, and

varying trgan-Ru(3-ClPY) 2(DTBDiox) 2 over the range from about I x 10-4 to .3.4 x I1o-4 m.

with no significant variation in kobsd. .
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The isomerisation of Ru(3-CIPY) 2 (DTBDiox) 2 in d8-toluene at 930C was followed by

1H NMR ([Ru(3-C1PY) 2(DTBDiox) 2] = 2.72 x 10-3 M; [3-chloropyridine] = 0.5 M).

Results and Discussion:

The tans-Ru(R-PY) 2(DTBDiox) 2 species are best regarded as fully delocalised

tran-Ru(lI)(R-PY) 2(DTBCat(-2))(DTBSq(-1)) species (so-caUed (S) (starting) species in

previous discussions) (3-5,7). Their electronic spectra are typified by a very intense

absorption near 1100 nm attributed to diox (7r) -- > Ru(dir) + diox (x*) IL + LMCT

(Fig. 1). They display only weak absorption in the visible region (near 580 nm (7)).

Synthesis of the gis complexes, and background literature:

When a rns-Ru(R-PY)2 (DTBDiox) 2 complex is warmed with a pyridine, a band near

600 nm (Table 1), grows in at a rate which depends upon temperature, concentration of

pyridine, and nature of the R substituent (Fig.2). Isomerisation proceeds within a fairly

narrow range of pyridine concentrations. If a large excess of pyridine ( > 104

[Ru(R-PY) 2(DTBDiox) 2]) is used, a side reaction takes place, probably forming the

tetrapyridine species, and the isosbestic point is lost. The ans isomer undergoes another

side reaction if insufficient pyridine (< 10 [Ru(R-PY) 2(DTBDiox) 2]) is used. Heating either

the s or trans isomer in an inert solvent, in the absence of an excess of pyridine ligand, led

to eventual decomposition. Isomerisation occurs cleanly when the pyridine to ruthenium

ratio lay approximately in the range 102 - 1 3.

The final electronic spectrum has the same overall band envelope as that (6) of

cis-Ru(bpy)(DTBDiox) 2 (save for the absence of the Ru --- > bpy CT transition), providing

evidence that isomerisation has occurred. The absorption near 600 am (Table 1) corresponds

with an-- > 71' semiquinone transition allowed in the cis isomer but forbidden in the trans

isomer (5,7). Further, gis complexes were isolated (see expt.) and their NMR spectra (Expt.)

leave no doubt that is-Ru(R-PY)2 (DTBDiox) 2 species have been formed. Under the

experimental conditions used to prepare the trans isomer, no gis isomer is isolated (7Y
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A number of cis-trans isomerisations of ruthenium complexes have been previously

reported. It is revealing to contrast their behaviour. The species cis-[Ru(bpy) 2 (H2O) 2j 2 + is

photo-isomerised to the ans species by a dissociative pathway (9), but no thermal route was

reported. The species trans-Ru(dppm) 2C2 (dppm = bis-diphenylphosphinomethane) can

readily be thermally isomerised to the cis isomer in halocarbon solvents (at 830 C (reflux) in

DCE) (10). This may be reversed (is -- > tra=) photochemically (10). Oxidation of

gis-RuII(dppm) 2Cl2 leads to isomerisation to the tran-RuI II species, and the formation of

iran-Ru(dppm) 2Cl2 upon subsequent reduction (10). The complex cation

1rans-[Ru(acac) 2 (CH3CN)2]2 + is thermally isomerised to the , species, at 300 C with a

half-life of about 9 days (11). Data for ijj and trans-[RuCl(NO)(bpy) 212 + have been

reported (12), but no inter-conversion experiments were reported. Some

bis(dithiocarbamate)nitrosyl complexes of ruthenium, such as gis-Ru(NO)(S 2CNMe 2)SCN

can be thermally converted to the corresponding tan= isomer, in the solid state, at 2200C

(13). Transformations in the rather more complex Ru(AzPy) 2C12 (AzPy =

2-phenylazopyridine) have also been explored (14). A very detailed contribution discusses

the formation of all tas ttt-Ru(CO) 2Cl2(PR3)2 species which isomerise in chloroform at

from 500C (actual temperature depending upon the phosphine) to the all *

ccc-Ru(CO) 2CI2(PR 3)2 species which then isomerises to the thermodynamically stable

cct-Ru(CO)2CI2 (PR3 )2 species (15). Our systems appear to be the first ruthenium species to

be reported where isomers may be isolated by addition of an external common ligand (vide

infra).

Nuclear Magnetic Resonance Studies: Ira=-Ru(R-PY) 2(DTBDiox) 2 complexes can

exist in two forms with C2h and C2v symmetry depending upon the relative orientation of the

t-butyl groups. Previously we have demonstrated (7) that for all of these complexes, only tA o

t-butyl resonances are observed for the DTBDiox ligands indicative of a single isomer ha. I ng

been prepared. The X-ray data (3) for both the (S) trans-Ru(4-t-BuPY) 2(DTBDiox)i and the

oxidised (01) =tar-[Ru(3-C1PY) 2(DTBDiox)2] + cation show that these tra= isomers in 'he
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solid state have C2h symmetry.

The cis-Ru(R-PY) 2(DTBDiox) 2 species can exist as three different geometric isomers

which could give rise to eight t-butyl resonances in their 1H NMR spectra (Exot.). Four

different t-butyl resonances arise from two cis isomers with same C2 symmetry (so-called

symmetric isomers). Another four different t-butyl resonances come from the third cis

isomer which has C1 symmetry (asymmetric isomer). In fact, these eight t-butyl resonances

are observed for i-Ru(3-CPY) 2(DTBDiox) 2, although we have been unable to separate

these three cis isomers.

When isomerisation of the tran-Ru(3-ClPY) 2(DTBDiox) 2 species was followed by

NMR, in d8-toluene, the resonances for all three is isomers grew in at approximately the

same rate (16).

Electrochemistry: The electrochemical behaviour of the ci-Ru(R-PY) 2(DTBDiox) 2

species is very similar to that of the =rns analogues (Table 3). Assignments have been

discussed in depth previously (6,7). Arguments have been expressed in the literature relating

differences in the electrochemical behaviour of ci and tans pairs, to differences in

electronic structure. Thus the ruthenium centred waves observed with the cis and trans

[RuCI(NO)(bpy) 2]2 + nitrosyl species (12) differ by only 10 mV, but there is a substantial

difference (170 mV) in the nitrosyl reduction wave for these two isomers, implying some

marked structurally dependent electronic changes localised on the nitrosyl group. The

MII/M I potentials for the pairs of is and t=n isomers M(dppm) 2Cl2 (M = Os, Ru) (10),

differ by 370 mV (Ru) and 460 mV (Os) with the gis isomers being the most difficult to

oxidise, the difference being attributed to the difference in W-back-bonding capability in the

pairs of isomers. Where more than one 7r-accepting ligand is present, such as in the series

[Ru(dppm) 2(CO)X] + and [Ru(bpy)(dppe)(CO)X] + (X = Cl, Br, I) (17), the trans isomer is

more difficult to oxidise by up to 450 mV. In our dioxolene system, couple V (Table 3) is

most closely associated with the RuIII/Rul I couple (6,7). The lack of any shift in this couple

between gis and = isomer arises because at this oxidation level, the Ru II is bound tot te
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non-it -accepting catechol. The remaining couples involve redox processes which are more

localised on the dioxolene residues and are, accordingly, less sensitive to the geometry of the

isomer.

Kinetic Studies:. The kinetics of the isomerisation reactions of

Ru(3-ClPy) 2(DTBDiox)2 (2.07 x 10-4 M) were investigated at various temperatures with

3-chioropyridine concentrations ranging between 1.6 x 10-2 M and 2 x 10- 1 M (see Expt.)

Values of kobsd were derived from a Guggenheim plot (8) (Figure 3). The reaction followed

pseudo-first-order kinetics:

[1] -d[Ru(3-ClPy) 2(DTBDiox)2Ydt = kobsd[Ru(3-ClPY) 2(DTBDiox)2]

over at least for four half-lives. Values of kobsd at constant [3-chioropyridine] were

independent of the concentration of [Ru(3-ClPy) 2(DTBDiox)2].

Plots of llkobsd against [3-chioropyridine] were linear (Figure 4). This linearity is

consistent with the following mechanism:

[2] uaj=-Ru(3-ClPY)2(DTBDiOx) 2  Ru(3-ClPy)(DTBDiox)2 + 3-CiPy

kr
[3] Ru(3-CiPy)(DTBDiox) 2 -- - - - - > [Ru(3-CIPy)(DTBDiox) 2]

[4] [Ru(3-ClPy)(DTBDiox) 2]S* + 3-CIPy r~ ' -Ru(3-ClPY) 2 (DTBDiox)2

Assuming step (4] is fast and using the steady-state approximation (8) for

[Ru(3-C1Py)(DTBDiox) 2], the rate of isomerisation is:

[5) -d[xUan-Ru(3-CiPY) 2(DTBDiox) 2 j/dt

= f (k ikr)/(k- 1 [3-chloropyridine] + kr) I [itan-Ru(3-ClPY) 2( DTBDiox)2]

= kobsd[Uran-Ru(3-ClPY)2(DTBDiOx) 2 1

The calculated kj and ki1/kr derived respectively from the intercept (1/kj) and the

slope (k..i/kikr) are listed in Table 2. An Arrhenius plot of ln(kj) versus inverse temper&!r

led to an activation energy of 148t± 6 kUiMole, and, using the Eyring expression
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(8), an activation entropy of 88 ± 17 J/Mole.

The data (Figure 4) are consistent with a dissociative mechanism in which a pyridine

ligand is lost to form a five coordinate intermediate which can either re-attach the pyridine

ligand and return to the tra isomer, or undergo a twist, first to form two different trigonal

bipyramidal intermediates (e.g. see (15)) differing in the orientation of the t-butyl groups on

tude dioxolene ligands. These two intermediates can be interchanged by a pseudo-rotation.

When the pyri1ine ligand is re-attached to these intermediates, all three gis isomers are

formed. Ligand loss and formation of the five coordinate intermediate lead to alternative

decomposition pathways when insufficient pyridine is present to trap the intermediate.

The positive activation entropy value associated with reaction [1] is consistent with the

dissociative mechanism (15,18-21). Indeed both the activation enthalpy and entropy have

values close to those reported previously for mechanisms involving the loss of a ligand from a

six coordinate ruthenium(II) species (15,20). Specifically there is a close similarity between

the activation data reported here and those detailed for the ;somerisation of the

Ru(CO) 2C12 (PR3 )2 species (15).

A mixed ligand experiment shows that the rate of isomerisation of

trans-Ru(3-ClPY) 2 (DTBDiox)2 in the presence of bulk 4-methylpyridine is different from

that with bulk 3-chloropyridine (and vice versa). Although additional kinetic data cannot

readily be extracted because the electronic spectra of the various R-Py species do not differ

sufficiently, the result supports the proposed mechanism.

Electronic spectra:

The electronic spectra of these new gi species reveal some subtle but important

differences from the previously reported (7) spectra of the = species. The NIR band in

the gis-S species shifts slightly to lower energy with more electron donating pyridine 1igand,

(Table 1), consistent with the MLCT Ru d --- > semiquinone (7t*) transition, previouI'

assigned in the spectra of the analogous bipyridine species (6). The lower energy of tho, ".j d



--2/24/92 v2.01 Page -11-

in the pyridine series, relative to the bipyridine series, arises from the greater stabilisation of

the d orbitals by the bipyridine ligand. There is no shift with pyridine substituent in the

spectra of the t1a=s-S species (7), for the corresponding band which has little CT character.

The behaviour of the second band, near 600 nm., is more ambiguous, but does shift to

the red with the more electron accepting 3-chloro substituent. This is an n --- > 7E* transition

which evidently has some LMCT character.

The third band, near 400 nm, is evidently Ru (dr) ---> R-Py (Wr*), since it shifts to

lower energy in the sequence 4-methyl > 3-chloro > 4-Phenyl, this last having an especially

low energy r * orbital extending over the phenyl group.

To confirm certain subtle conclusions concerning the differences in electronic structure

between the is and tra= series, some of these species were oxidised, with silver ion, to the

01 species, to obtain their electronic spectra. These 01 complexes, which were not

isolated,have spectra closely related to the spectra of the gis-01 bipyridine analogues (6)

rather than to their tJ=-01 relatives. Thus the main band has MLCT Ru (dir) --- >

semiquinone (ir') character and shifts to lower energy with the more electron donating

pyridines. The corresponding band in the tra= species (transition 01,1), (7) has LMCT

character and shifts in the opposite sense with pyridine substituent. The shifts in the second

band, near 520 nm, are too small to comment upon.

These data support previous assignments, (6,7) and indeed add useful corroboratory

evidence. The contrasting dependencies upon dioxolene and pyridine substituents, arise from

changes in the degree of mixing of metal and ligand orbitals due to the symmetry restrictions

imposed by the two geometries (7). The gis isomers are concluded to parallel the bipyridine

species in having somewhat more RuII character than their 1ra= analogues (7).

Conclusion:

Irans-Ru(R-PY) 2(DTBDiox) 2 (C2h) species are kinetically favoured products during

synthesis and are isomerised to their corresponding gis isomers by warming with an excess of

a pyridine. A dissociative mechanism for this jrgm -- > jgi isomerisation is proposed.
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The electrochemical and optical data for the trans and cia isomers of

Ru(R-Py) 2(DTBDiox) 2 are compared. The electronic spectra support previous assignments

given for the corresponding cis-bpy complexes (6). Detailed analysis further corroborates

earlier arguments (5-7, 22) concerning the degree of mixing between metal and ligand

orbitals, and the formal oxidation states of these species.
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Table 1

Electronic Spectroscopic Data for g-Ru(R-PY) 2(DTB3Diox) 2 , (S), and

.d-[Ru(R-PY)2 (DTBDiox)2] +, (01), compiexesatb

Complex N max/mn

g~i-Ru(3-CPy) 2(DTBDiox) 2  1001 595 394

dRu(4-MePY) 2 (DTBDiox)2  1028 587 362(sh)

gLj-Ru(4-PhPy) 2 (DTBDiox)2  1009 597 412

r~i-Ru(4-BuPy) 2(DTBDiox) 2  1017 590 366

d-Ru(3-CIPY) 2(DTBDiOx) 2 + 738 519 379(sh) 305(sh)

d-Ru(4-MePY)2 (DTBDiOx)2 + 748 511 378(sh) 315(sh)

gj-Ru(4-PhPy)2 (DTBDiox) 2 + 743 526(sh) 369(sh)

d-Ru(4-BuPY) 2(DTBDiOx) 2 + 761 513 37 1(sh)

a) solvent: DCE Data for the gi (S) species from solid starting materials. b) Oxidised (0 1)

species are prepared by the oxidation of S species with Ag + ions in DCE, followed by

filtration through Celite.
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Table 2 Rate Constants kj and k-1 /kr for Isomerisation of 1=-Ru(3-CIPY) 2(DTBDiox) 2 at

Different Temperatures.a

Temp. K k1 (x 10-4 s) k-.i/kr (M)

91 1.74(0.19) 12.7(2.2)

96 3.76(0.08) 12.7(0.4)

100 6.82(0.41) 10.2(l.0)

105 12.0(0.1) 9.4(l.5)

110 20.7(0.1) 6.7(0.5)

a) Data derived from the kobsd data cited in Experimental section.

Standard deviation in parenthesis.
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Table 3

Electrochemical Data for Ru(NN) 2(DTBDiox) 2 Complexesa

Complex El/2 (V) vs. SCE

11 111 IV V

1=n-Ru(3-ClPy)2(DTBDiOx)2 b + 1.08 + 0.30 -0.60 -1.5 lqr

gja-Ru(3-ClPY) 2(DTBDiox)2  + 1.01 +0.35 -0.71 -1.54qr

gk-Ru(bpy)(DTBDiox) 2c + 1.00 + 0.31 -0.71 -1.42

a) Measurements were made using 1,2-dichioroethane solutions of the starting materials

(10-3 M) containing 0.2M TEAP. El/2 values are obtained from the cyclic voltarnmetry at

lO0mVs 1 . qr = quasi-reversible. For assignment of the redox couples, see refs.(6.7). b)

ref.(7). c) ref.(6). The assumed position of the Fc + /Fc couple used in reference (6)

differed by + 0. 115 V relative to that assumed here. The potentials taken from reference

(6) have been appropriately corrected.
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Figure Legends

Figure 1. Visible-Near infrared spectra for cis-(.) and trans-Ru(3-ClPY) 2(DTBDiox) 2

(-) i) 1,2-dichloroethane.

Figure 2.

A typical data set showing successive scans of the visible spectrum during the

isomerisation of trans-Ru(3-ClPy) 2 (DTBDiox) 2 (2.07 x 10"4 M) in the presence of an excess

of 3-chloropyridine (1.0 x 10-1 M) at 1000C in o-dichlorobenzene. The first scan in the

experiment was not recorded on the spectrum.

Figure 3.

Guggenheim Plot using data from Figure 2 at wavelength = 600 nm for the

isomerisation of the trga-Ru(3-ClPY) 2 (DTBDiox) 2 complex. The delay time in the

Guggenheim plots is approximately two half-lives.

Figure 4.

Plots of 1/kobsd vs. [3-chloropyridine] for the isomerisation of

Ru(3-C1PY) 2(DTBDiox) 2 at 1000C, in o-dichlorobenzene, at (from upper to lower), 91. 96.

100, 105 and 110 oc.
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